

Description

Features

• 30V, 5A

 $R_{\text{DS(ON)}}$ Typ = 22m Ω @ V_{GS} = 10V

 $R_{DS(ON)}$ Typ = 24m Ω @ V_{GS} = 4.5V

 $R_{DS(ON)}$ Typ = 29m Ω @ V_{GS} = 2.5V

- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead Free

Application

- Load Switch
- PWM Application
- Power Management

Role Schematic Diagram

3400L

1 G 2 S

Marking and Pin Assignment

Package Marking and Ordering Information

Device	Marking	Package	Outline	Reel Size	Reel (pcs)	Per Carton (pcs)
CRMLTU3400L	3400L	SOT-23	TAPING	7"	3000	120000

D

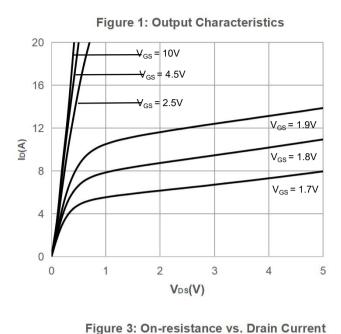
Absolute Maximum Ratings (@ T_J = 25°C unless otherwise specified)

Symbol	Parameter		Value	Units
V _{DS}	Drain-to-Source Voltage		30	V
V _{GS}	Gate-to-Source Voltage		±12	V
	Continuous Drain Current	T _A = 25°C	5	А
Ι _D		T _A = 100°C	3	А
I _{DM}	Pulsed Drain Current ⁽¹⁾		20	А
P _D	Power Dissipation	T _A = 25°C	1.2	W
$R_{ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$	Thermal Resistance, Junction to Ambie	ent ⁽²⁾	104	°C/W
T_{J},T_{STG}	Junction & Storage Temperature Rang	je	-55 to 150	°C

Electrical Characteristics (T_J = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Uni
Off Chara	acteristics					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	30	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 30V, V _{GS} = 0V	-	-	1.0	μA
I _{GSS}	Gate-Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 12V$	-	-	±100	nA
On Chara	acteristics				6	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	0.45	0.8	1.25	V
R _{DS(ON)}		V _{GS} = 10V, I _D = 3A	-	22	28	mΩ
	Static Drain-Source ON-Resistance ⁽³⁾	V _{GS} = 4.5V, I _D = 2A	-	24	31	mΩ
		V _{GS} = 2.5V, I _D = 1A	-	29	39	mΩ
Dynamic	Characteristics					
C _{iss}	Input Capacitance		Χ-	508	-	pF
C _{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 15V,$ f = 1MHz	-	48	-	pF
C _{rss}	Reverse Transfer Capacitance		<u> </u>	41	-	pF
Q _g	Total Gate Charge		-	7	-	nC
Q_gs	Gate Source Charge	$V_{GS} = 0$ to 4.5V $V_{DS} = 15V, I_{D} = 3A$	-	1.7	-	nC
Q_{gd}	Gate Drain("Miller") Charge	$v_{\rm DS} = 13 v$, $t_{\rm D} = 3 A$	-	1.6	-	nC
Switchin	g Characteristics					
t _{d(on)}	Turn-On DelayTime	-	-	4	-	ns
t _r	Turn-On Rise Time	V _{GS} = 4.5V, V _{DD} = 15V	-	17	-	ns
$t_{d(off)}$	Turn-Off DelayTime	$I_D = 3A, R_{GEN} = 3\Omega$	-	95	-	ns
t _f	Turn-Off Fall Time		-	37	-	ns
Drain-So	urce Diode Characteristics and N	lax Ratings				
I _S	Maximum Continuous Drain to Source Diode Forward Current		-	-	5	А
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	20	А
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0V, I _S = 3A	-	-	1.2	V
trr	Body Diode Reverse Recovery Time		-	6.7	-	ns
Qrr	Body Diode Reverse Recovery Charge	I _F = 3A, di/dt = 100A/us	-	2.3	-	nC

Notes:


1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.

2. $R_{\scriptscriptstyle \theta JA}$ is measured with the device mounted on a 1inch² pad of 2oz copper FR4 PCB

3. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 0.5%.

Typical Performance Characteristics

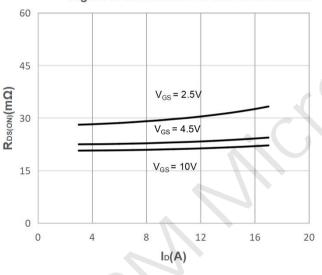
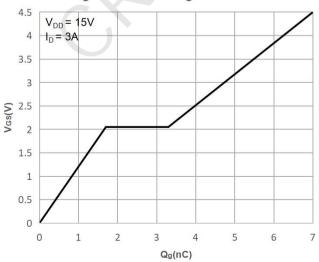



Figure 5: Gate Charge Characteristics

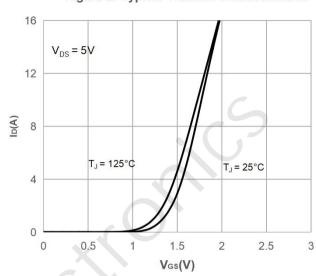


Figure 2: Typical Transfer Characteristics

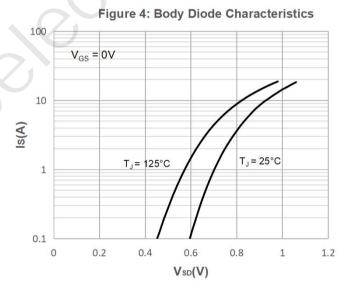
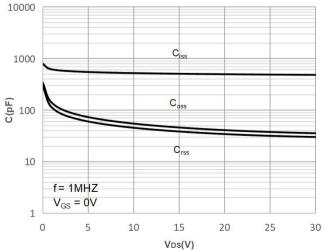



Figure 6: Capacitance Characteristics

Typical Performance Characteristics

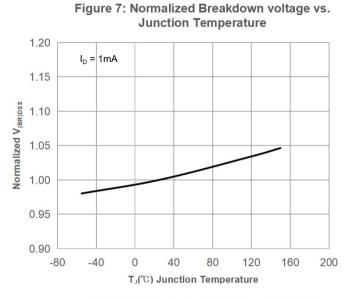
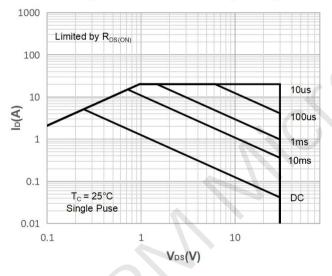
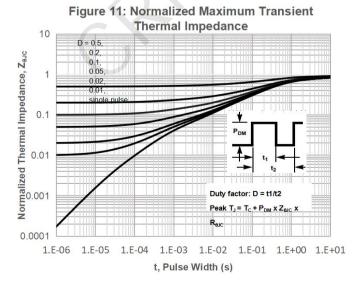




Figure 9: Maximum Safe Operating Area

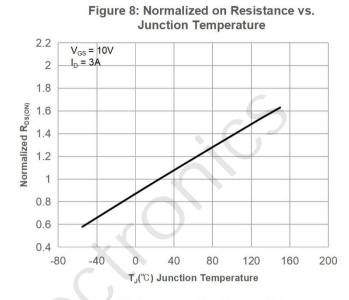
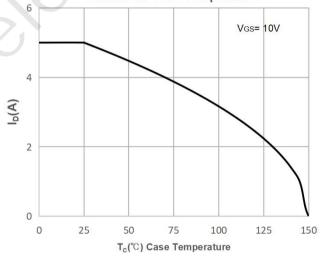
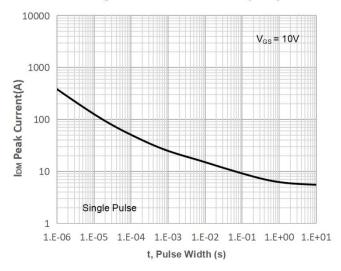
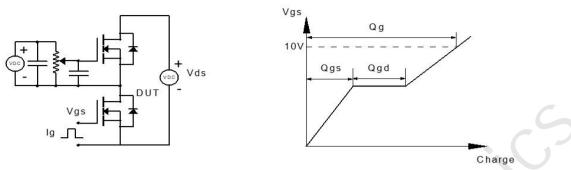
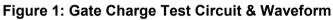


Figure 10: Maximum Continuous Drian Current vs. Case Temperature


Figure 12: Peak Current Capacity

Test Circuit

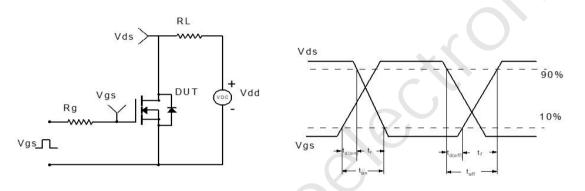


Figure 2: Resistive Switching Test Circuit & Waveform

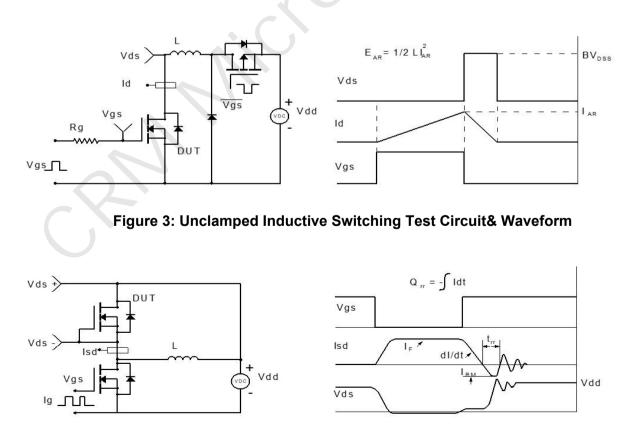
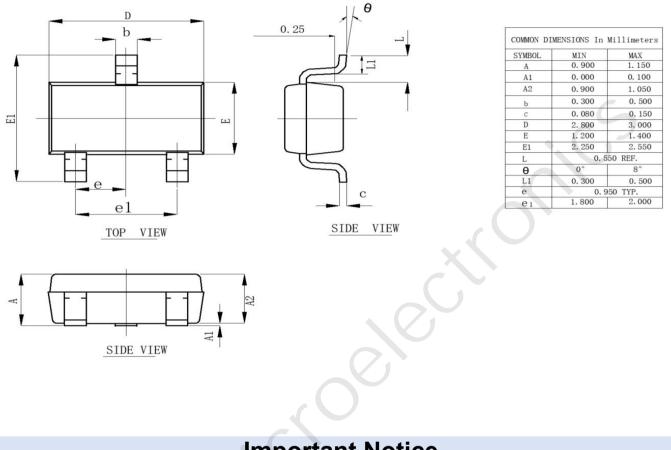



Figure 4: Diode Recovery Test Circuit & Waveform

Package Mechanical Data(SOT-23)

Important Notice

The information presented in datasheets is for reference only. CRM reserves the right to make changes at any time to any products or information herein, without notice.

Customers are responsible for the design and applications, including compliance with all laws, regulations and safety requirements or standards.

"Typical" parameters which provided in datasheets can vary in different applications and actual performance may vary over time. Customers are responsible for doing all necessary testing to minimize the risks associated with their applications and products.

is a registered trademark of Wuxi CRM Microelectronics Co. , Ltd. Copyright ©2023 CRM Microelectronics Co. , Ltd. All rights reserved.

Contact information

For more information, please visit: http://www.crm-semi.tech For sales information, please send an email to: sales@crm-semi.com