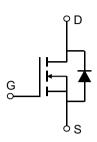
N-Channel 100V, 9.5mΩ Typ. Power MOSFET


Description

Features

• 100V, 60A

 $R_{DS(ON)}$ Typ = 9.5m Ω @ V_{GS} = 10V

- Advanced Split Gate Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- 100% UIS TESTED!
- 100% ΔVds TESTED!

Application

- Load Switch
- PWM Application
- Power Management

Marking and Pin Assignment

Package Marking and Ordering Information

Device	Marking	Package	Outline	Reel Size	Reel (pcs)	Per Carton (pcs)
CRMKGH1012A	CRMKGH1012A	TO-252-3L	TAPING	13"	2500	25000

Absolute Maximum Ratings (@ T_J = 25°C unless otherwise specified)

Symbol	Parameter		Value	Units
V_{DS}	Drain-to-Source Voltage		100	V
V _{GS}	Gate-to-Source Voltage		±20	V
I _D	Continuous Drain Current	T _C = 25°C	60	А
		T _C = 100°C	36	А
I _{DM}	Pulsed Drain Current (1)		240	А
E _{AS}	Single Pulsed Avalanche Energy (2)		90	mJ
P_{D}	Power Dissipation	T _C = 25°C	78	W
$R_{ heta JC}$	Thermal Resistance, Junction to Case		1.6	°C/W
T_J,T_STG	Junction & Storage Temperature Range		-55 to 150	°C

N-Channel 100V, $9.5m\Omega$ Typ. Power MOSFET

Electrical Characteristics (T_J = 25°C unless otherwise specified)

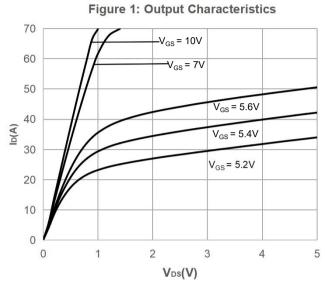
Off Characteristics $V_{(BR)DSS} \text{Drain-Source Breakdown Voltage} \qquad I_D = 250 \mu \text{A}, \ V_{GS} = 0 \text{V} \qquad 100 \qquad - \qquad - \qquad \text{V} \\ I_{DSS} \text{Zero Gate Voltage Drain Current} \qquad V_{DS} = 100 \text{V}, \ V_{GS} = 0 \text{V} \qquad - \qquad - \qquad 1.0 \qquad \mu \text{A} \\ I_{GSS} \text{Gate-Body Leakage Current} \qquad V_{DS} = 0 \text{V}, \ V_{GS} = \pm 20 \text{V} \qquad - \qquad - \qquad \pm 100 \qquad \text{nA} \\ \text{On Characteristics} \\ V_{GS(th)} \text{Gate Threshold Voltage} \qquad V_{DS} = V_{GS}, \ I_D = 250 \mu \text{A} \qquad 2.4 \qquad 3 \qquad 3.6 \qquad \text{V} \\ \text{On Characteristics} \qquad \qquad \text{On Characteristics} \\ \text{On Characteristics} \qquad On Characte$, ,	<u> </u>				
$\begin{array}{c} V_{(BR)DSS} & Drain-Source Breakdown Voltage & I_D = 250 \mu A, \ V_{GS} = 0V & 100 & - & - & V \\ I_{DSS} & Zero Gate Voltage Drain Current & V_{DS} = 100V, \ V_{GS} = 0V & - & - & 1.0 & \mu A \\ I_{GSS} & Gate-Body Leakage Current & V_{DS} = 0V, \ V_{GS} = \pm 20V & - & - & \pm 100 & n A \\ \hline \\ On Characteristics & & & & & & \\ \hline V_{GS(Ph)} & Gate Threshold Voltage & V_{DS} = V_{GS}, \ I_D = 250 \mu A & 2.4 & 3 & 3.6 & V \\ \hline R_{DS(DN)} & Static Drain-Source ON-Resistance & V_{GS} = 10V, \ I_D = 30A & - & 9.5 & 12.3 & m \Omega \\ \hline \\ Dynamic Characteristics & & & & & & \\ \hline C_{ins} & Input Capacitance & V_{GS} = 10V, \ I_D = 30A & - & 9.5 & 12.3 & m \Omega \\ \hline \\ Dynamic Characteristics & & & & & & & \\ \hline C_{ins} & Input Capacitance & V_{GS} = 0V, \ V_{DS} = 50V, \ I_D = 30A & - & 9.5 & 12.3 & m \Omega \\ \hline \\ Dynamic Characteristics & & & & & & & & \\ \hline C_{ins} & Reverse Transfer Capacitance & V_{GS} = 0V, \ V_{DS} = 50V, \ I_D = 30A & - & 9.5 & 12.3 & m \Omega \\ \hline \\ Dynamic Characteristics & & & & & & & & \\ \hline C_{ins} & Reverse Transfer Capacitance & V_{GS} = 0V, \ V_{DS} = 50V, \ I_D = 20A, \ I_D = 20A & - & 28 & - & n C \\ \hline \\ Q_{gs} & Gate Source Charge & V_{GS} = 0 to 10V & - & 4.9 & - & n C \\ \hline Q_{gs} & Gate Drain ("Miller") Charge & V_{GS} = 50V, \ I_D = 20A & - & 7 & - & n C \\ \hline \\ Switching Characteristics & & & & & & \\ \hline t_{q(ori)} & Turn-On DelayTime & V_{GS} = 10V, \ V_{DD} = 50V & - & 17.0 & - & n S \\ \hline t_{q(ori)} & Turn-Off DelayTime & I_D = 20A, \ R_{GEN} = 6\Omega & - & 30 & - & n S \\ \hline t_{q(ori)} & Turn-Off Fall Time & - & 18 & - & n S \\ \hline \\ Drain-Source Diode Characteristics and Max Ratings & & & & & \\ \hline I_{SM} & Maximum Continuous Drain to Source Diode Forward Current & - & - & 60 & A \\ \hline I_{SM} & Maximum Pulsed Drain to Source Diode Forward Current & - & - & 240 & A \\ \hline V_{SD} & Drain to Source Diode Forward Voltage & V_{GS} = 0V, \ I_S = 30A & - & - & 1.2 & V \\ \hline trr & Body Diode Reverse Recovery Time & & & & & & & & \\ \hline I_{CD} & I_{CD} \\ \hline \\ I_{CD} & I_{CD} $	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Off Chara	acteristics					
$\begin{array}{c} I_{\rm GSS} {\rm Gate-Body Leakage Current} V_{\rm DS} = 0V, V_{\rm GS} = \pm 20V - \pm 100 {\rm nA} \\ \hline \textbf{On Characteristics} \\ \hline V_{\rm GS(th)} {\rm Gate Threshold Voltage} V_{\rm DS} = V_{\rm GS}, \ I_{\rm D} = 250 \mu \text{A} 2.4 3 3.6 V \\ \hline \textbf{R}_{\rm DS(ON)} {\rm Static Drain-Source ON-Resistance}^{(3)} V_{\rm GS} = 10V, \ I_{\rm D} = 30A - 9.5 12.3 {\rm m}\Omega \\ \hline \textbf{Dynamic Characteristics} \\ \hline \textbf{C}_{\rm iss} {\rm Input Capacitance} V_{\rm GS} = 0V, \ V_{\rm DS} = 50V, \\ \hline \textbf{C}_{\rm oss} {\rm Output Capacitance} V_{\rm GS} = 0V, \ V_{\rm DS} = 50V, \\ \hline \textbf{C}_{\rm rss} {\rm Reverse Transfer Capacitance} V_{\rm GS} = 0V, \ V_{\rm DS} = 50V, \\ \hline \textbf{C}_{\rm rss} {\rm Reverse Transfer Capacitance} V_{\rm GS} = 0 \text{ to} 10V \\ \hline \textbf{C}_{\rm gs} {\rm Gate Source Charge} V_{\rm GS} = 0 \text{ to} 10V \\ \hline \textbf{C}_{\rm gs} {\rm Gate Drain("Miller") Charge} V_{\rm SS} = 0 \text{ to} 10V \\ \hline \textbf{C}_{\rm gg} {\rm Gate Drain("Miller") Charge} V_{\rm SS} = 50V, \ I_{\rm D} = 20A \\ \hline \textbf{C}_{\rm gg} {\rm Gate Drain("Miller") Charge} V_{\rm GS} = 50V, \ V_{\rm DS} = 50V \\ \hline \textbf{C}_{\rm gg} {\rm Turn-On DelayTime} V_{\rm GS} = 10V, \ V_{\rm DD} = 50V \\ \hline \textbf{C}_{\rm gg} {\rm Turn-On Rise Time} V_{\rm GS} = 10V, \ V_{\rm DD} = 50V \\ \hline \textbf{C}_{\rm gg} {\rm Turn-Off DelayTime} I_{\rm D} = 20A, \ R_{\rm GEN} = 6\Omega \\ \hline \textbf{C}_{\rm gg} {\rm Turn-Off Fall Time} {\rm Ins} {\rm Ins} \\ \hline \textbf{Drain-Source Diode Characteristics and Max Ratings} \\ \hline \textbf{I}_{\rm S} {\rm Maximum Pulsed Drain to Source Diode Forward Current} - - 60 A \\ \hline \textbf{I}_{\rm SM} {\rm Maximum Pulsed Drain to Source Diode Forward Current} - - 50 - {\rm ns} \\ \hline \textbf{I}_{\rm F} = 20A, \ {\rm didt} = 100A/us \\ \hline \textbf{C}_{\rm F} = 20A, \ {\rm didt} = 100A/us \\ \hline \end{tabular} - 50 - {\rm ns} \\ \hline \textbf{C}_{\rm GS} = 20A, \ {\rm didt} = 100A/us \\ \hline \end{tabular} - 50 - {\rm ns} \\ \hline \textbf{C}_{\rm GS} = 20A, \ {\rm didt} = 100A/us \\ \hline \end{tabular} - 50 - {\rm ns} \\ \hline \end{tabular} - 50 - {\rm ns} \\ \hline \end{tabular} - 50 - {\rm ns} \\ \hline \end{tabular} - - 50 - {\rm ns} \\ \hline tabul$	V _{(BR)DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100	-	-	V
$\begin{array}{c} \textbf{On Characteristics} \\ \textbf{$V_{\text{GS}(m)}$} & \textbf{Gate Threshold Voltage} & \textbf{$V_{\text{DS}} = V_{\text{GS}}$, $I_{\text{D}} = 250 \mu \text{A}$} & \textbf{2.4} & \textbf{3} & \textbf{3.6} & \textbf{V} \\ \textbf{$R_{\text{DS}(ON)}$} & \textbf{Static Drain-Source ON-Resistance}^{(3)} & \textbf{$V_{\text{GS}} = 10V$, $I_{\text{D}} = 30A$} & - & 9.5 & 12.3 & m\Omega \\ \textbf{Dynamic Characteristics} \\ \textbf{C_{ISS}} & \text{Input Capacitance} & \textbf{$V_{\text{CS}} = 0V$, $V_{\text{DS}} = 50V$, $ & 558$ & - & pF \\ \textbf{C_{OSS}} & \text{Output Capacitance} & \textbf{$V_{\text{CS}} = 0V$, $V_{\text{DS}} = 50V$, $ & 558$ & - & pF \\ \textbf{C_{TSS}} & \text{Reverse Transfer Capacitance} & \textbf{$V_{\text{CS}} = 0V$, $V_{\text{DS}} = 50V$, $ & 558$ & - & pF \\ \textbf{Q_{G}} & \text{Total Gate Charge} & \textbf{$V_{\text{CS}} = 0 \text{ to } 10V$ & - & 4.9 & - & nC \\ \textbf{Q_{gS}} & \text{Gate Source Charge} & \textbf{$V_{\text{CS}} = 0 \text{ to } 10V$ & - & 4.9 & - & nC \\ \textbf{Q_{gS}} & \text{Gate Drain("Miller") Charge} & \textbf{$V_{\text{CS}} = 50V$, $I_{\text{D}} = 20A$} & - & 7 & - & nC \\ \textbf{Switching Characteristics} \\ \textbf{$t_{\text{d}(on)}$} & \text{Turn-On DelayTime} & \textbf{$V_{\text{CS}} = 10V$, $V_{\text{DD}} = 50V$ & - & 13.5$ & - & ns \\ \textbf{$t_{\text{d}(off)}$} & \text{Turn-Off DelayTime} & \textbf{$I_{\text{D}} = 20A$, $R_{\text{GEN}} = 6\Omega$} & - & 30 & - & ns \\ \textbf{t_{t}} & \text{Turn-Off Fall Time} & \textbf{$I_{\text{D}} = 20A$, $R_{\text{GEN}} = 6\Omega$} & - & 30 & - & ns \\ \textbf{t_{T}} & \text{Turn-Off DelayTime} & \textbf{$I_{\text{D}} = 20A$, $R_{\text{GEN}} = 6\Omega$} & - & 30 & - & ns \\ \textbf{t_{S}} & \text{Maximum Continuous Drain to Source Diode Forward Current} & - & - & 60 & A \\ \textbf{I_{SM}} & \text{Maximum Pulsed Drain to Source Diode Forward Current} & - & - & 240 & A \\ \textbf{V_{SD}} & \text{Drain to Source Diode Forward Voltage} & \textbf{$V_{\text{GS}} = 0V$, $I_{\text{S}} = 30A$} & - & - & 1.2 & V \\ \text{trr} & \text{Body Diode Reverse Recovery Time} & \textbf{$I_{\text{E}} = 20A$, $di/dt = 100Avus} & - & 50 & - & ns \\ \textbf{$I_{\text{E}} = 20A$, $di/dt = 100Avus} & - & 50 & - & ns \\ \textbf{$I_{\text{E}} = 20A$, $di/dt = 100Avus} & - & 50 & - & ns \\ \textbf{$I_{\text{E}} = 20A$, $di/dt = 100Avus} & - & 50 & - & - & 50 \\ \textbf{$I_{\text{E}} = 20A$, $di/dt = 100Avus} & - & 50 & - & - & - & 50 \\ \textbf{$I_{\text{E}} = 20A$, di/dt	I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 100V, V _{GS} = 0V	-	-	1.0	μΑ
$\begin{array}{c} V_{GS(\text{in})} \text{Gate Threshold Voltage} \qquad V_{DS} = V_{GS}, \ I_D = 250 \mu\text{A} \qquad 2.4 \qquad 3 \qquad 3.6 \qquad V \\ R_{DS(\text{ON})} \text{Static Drain-Source ON-Resistance}^{(3)} V_{GS} = 10V, \ I_D = 30A \qquad - \qquad 9.5 \qquad 12.3 \qquad \text{m}\Omega \\ \hline \textbf{Dynamic Characteristics} \\ \hline C_{Iss} \text{Input Capacitance} \qquad & - \qquad 1176 \qquad - \qquad pF \\ C_{Oss} \text{Output Capacitance} \qquad & V_{GS} = 0V, \ V_{DS} = 50V, \\ C_{rss} \text{Reverse Transfer Capacitance} \qquad & - \qquad 558 \qquad - \qquad pF \\ C_{rss} \text{Reverse Transfer Capacitance} \qquad & - \qquad 7.6 \qquad - \qquad pF \\ Q_g \text{Total Gate Charge} \qquad & - \qquad 28 \qquad - \qquad nC \\ Q_{gs} \text{Gate Source Charge} \qquad & V_{GS} = 0 \text{ to } 10V \\ V_{DS} = 50V, \ I_D = 20A \qquad - \qquad 7 \qquad - \qquad nC \\ \hline \textbf{Switching Characteristics} \\ \hline t_{d(on)} \text{Turn-On DelayTime} \qquad & - \qquad 13.5 \qquad - \qquad ns \\ t_r \text{Turn-On Rise Time} \qquad & V_{GS} = 10V, \ V_{DD} = 50V \qquad - \qquad 17.0 \qquad - \qquad ns \\ t_{d(off)} \text{Turn-Off DelayTime} \qquad & I_D = 20A, \ R_{GEN} = 6\Omega \qquad - \qquad 30 \qquad - \qquad ns \\ \hline \textbf{t}_r \text{Turn-Off Fall Time} \qquad & - \qquad 18 \qquad - \qquad ns \\ \hline \textbf{Drain-Source Diode Characteristics and Max Ratings} \\ \hline \textbf{I}_S \text{Maximum Continuous Drain to Source Diode Forward Current} \qquad - \qquad - \qquad 60 \qquad A \\ \hline \textbf{I}_{SM} \text{Maximum Pulsed Drain to Source Diode Forward Current} \qquad - \qquad - \qquad 240 \qquad A \\ \hline \textbf{V}_{SD} \text{Drain to Source Diode Forward Voltage} \qquad V_{GS} = 0V, \ I_S = 30A \qquad - \qquad - \qquad 1.2 \qquad V \\ \hline \text{trr} \text{Body Diode Reverse Recovery Time} \qquad \qquad I_F = 20A, \ di/dt = 100A/us \\ \hline \textbf{I}_F = 20A, \ di/dt = 100A/us \\ \hline \end{tabular} \qquad \qquad$	I _{GSS}	Gate-Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
$R_{DS(ON)} \text{Static Drain-Source ON-Resistance}^{(3)} V_{GS} = 10V, \ I_D = 30A \qquad - 9.5 \qquad 12.3 \qquad \text{m}\Omega$ $ \text{Dynamic Characteristics} $ $ C_{Iss} \text{Input Capacitance} \qquad V_{GS} = 0V, \ V_{DS} = 50V, \qquad - 558 \qquad - pF$ $ C_{Oss} \text{Output Capacitance} \qquad V_{GS} = 0V, \ V_{DS} = 50V, \qquad - 558 \qquad - pF$ $ C_{rss} \text{Reverse Transfer Capacitance} \qquad - 7.6 \qquad - pF$ $ Q_g \text{Total Gate Charge} \qquad V_{GS} = 0 \text{ to } 10V \qquad - 4.9 \qquad - nC$ $ Q_{gs} \text{Gate Source Charge} \qquad V_{OS} = 50V, \ I_D = 20A \qquad - 7 \qquad - nC$ $ Switching \text{Characteristics} $ $ t_t \text{Turn-On DelayTime} \qquad - 13.5 \qquad - ns$ $ t_t \text{Turn-On Rise Time} \qquad V_{GS} = 10V, \ V_{DD} = 50V \qquad - 17.0 \qquad - ns$ $ t_{d(off)} \text{Turn-Off BelayTime} \qquad I_D = 20A, \ R_{GEN} = 6\Omega \qquad - 30 \qquad - ns$ $ t_t \text{Turn-Off Fall Time} \qquad - 18 \qquad - ns$ $ \text{Drain-Source Diode Characteristics and Max Ratings} $ $ I_S \text{Maximum Continuous Drain to Source Diode Forward Current} \qquad - 60 \qquad A$ $ I_{SM} \text{Maximum Pulsed Drain to Source Diode Forward Current} \qquad - 240 \qquad A$ $ V_{SD} \text{Drain to Source Diode Forward Voltage} V_{GS} = 0V, \ I_S = 30A \qquad - 1.2 \qquad V$ $ \text{trr} \text{Body Diode Reverse Recovery Time} \qquad I_F = 20A, \ \text{di/dt} = 100A/us} \qquad - 50 \qquad - ns$	On Chara	acteristics				6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.4	3	3.6	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R _{DS(ON)}	Static Drain-Source ON-Resistance ⁽³⁾	$V_{GS} = 10V, I_D = 30A$	-	9.5	12.3	mΩ
$ \begin{array}{c} C_{oss} \text{Output Capacitance} \qquad V_{GS} = 0V, \ V_{DS} = 50V, \\ f = 1 \text{MHz} \qquad - 558 \qquad - pF \\ C_{rss} \text{Reverse Transfer Capacitance} \qquad - 7.6 \qquad - pF \\ Q_g \text{Total Gate Charge} \qquad - 28 \qquad - nC \\ Q_{gs} \text{Gate Source Charge} \qquad V_{GS} = 0 \text{ to } 10V \qquad - 4.9 \qquad - nC \\ Q_{gd} \text{Gate Drain("Miller") Charge} \qquad - 7 \qquad - nC \\ \textbf{Switching Characteristics} \\ \textbf{t}_{d(on)} \text{Turn-On DelayTime} \qquad - 13.5 \qquad - ns \\ \textbf{t}_{r} \text{Turn-On Rise Time} \qquad V_{GS} = 10V, \ V_{DD} = 50V \qquad - 17.0 \qquad - ns \\ \textbf{t}_{d(off)} \text{Turn-Off DelayTime} \qquad I_{D} = 20A, \ R_{GEN} = 6\Omega \qquad - 30 \qquad - ns \\ \textbf{t}_{f} \text{Turn-Off Fall Time} \qquad - 18 \qquad - ns \\ \textbf{Drain-Source Diode Characteristics and Max Ratings} \\ \textbf{I}_{S} \text{Maximum Continuous Drain to Source Diode Forward Current} \qquad - \qquad - 60 \qquad A \\ \textbf{I}_{SM} \text{Maximum Pulsed Drain to Source Diode Forward Current} \qquad - \qquad - 240 \qquad A \\ \textbf{V}_{SD} \text{Drain to Source Diode Forward Voltage} \textbf{V}_{GS} = 0V, \ \textbf{I}_{S} = 30A \qquad - \qquad - \qquad 1.2 \qquad V \\ \text{trr} \text{Body Diode Reverse Recovery Time} \qquad \textbf{I}_{F} = 20A, \ di/dt = 100A/us \qquad - 50 \qquad - ns \\ \textbf{I}_{F} = 20A, \ di/dt = 100A/us} \qquad - \qquad - 50 \qquad - ns \\ \textbf{I}_{F} = 20A, \ di/dt = 100A/us} \qquad - \qquad - 50 \qquad - \qquad - ns \\ \textbf{I}_{F} = 20A, \ di/dt = 100A/us} \qquad - \qquad - 50 \qquad - \qquad - ns \\ \textbf{I}_{F} = 20A, \ di/dt = 100A/us} \qquad - \qquad - \qquad - 50 \qquad - \qquad - \qquad - \qquad - 1.2 \qquad V \\ \textbf{I}_{F} = 20A, \ di/dt = 100A/us} \qquad - \qquad - \qquad - 50 \qquad - \qquad $	Dynamic	Characteristics					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C _{iss}	Input Capacitance		- /	1176	-	pF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{oss}	Output Capacitance		-	558	-	pF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{rss}	Reverse Transfer Capacitance	1 - 11VII 12	X-\	7.6	-	pF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q_g	Total Gate Charge	(-	28	-	nC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q_{gs}	Gate Source Charge	00	U .	4.9	-	nC
$t_{d(on)} \text{Turn-On DelayTime} \qquad \qquad - \qquad 13.5 \qquad - \qquad \text{ns} \\ t_r \text{Turn-On Rise Time} \qquad V_{GS} = 10 \text{V, } V_{DD} = 50 \text{V} \qquad - \qquad 17.0 \qquad - \qquad \text{ns} \\ t_{d(off)} \text{Turn-Off DelayTime} \qquad I_D = 20 \text{A, } R_{GEN} = 6 \Omega \qquad - \qquad 30 \qquad - \qquad \text{ns} \\ t_f \text{Turn-Off Fall Time} \qquad - \qquad 18 \qquad - \qquad \text{ns} \\ \textbf{Drain-Source Diode Characteristics and Max Ratings} \\ I_S \text{Maximum Continuous Drain to Source Diode Forward Current} \qquad - \qquad - \qquad 60 \qquad \text{A} \\ I_{SM} \text{Maximum Pulsed Drain to Source Diode Forward Current} \qquad - \qquad - \qquad 240 \qquad \text{A} \\ V_{SD} \text{Drain to Source Diode Forward Voltage} V_{GS} = 0 \text{V, } I_S = 30 \text{A} \qquad - \qquad - \qquad 1.2 \qquad \text{V} \\ \text{trr} \text{Body Diode Reverse Recovery Time} \qquad - \qquad 50 \qquad - \qquad \text{ns} \\ I_F = 20 \text{A, di/dt} = 100 \text{A/us} \\ \end{cases}$	Q_{gd}	Gate Drain("Miller") Charge	V _{DS} = 30V, I _D = 20A	-	7	-	nC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Switchin	g Characteristics					
$t_{d(off)} \text{Turn-Off DelayTime} \qquad I_D = 20\text{A}, \ R_{GEN} = 6\Omega \qquad - \qquad 30 \qquad - \qquad \text{ns}$ $t_f \text{Turn-Off Fall Time} \qquad - \qquad 18 \qquad - \qquad \text{ns}$ $\textbf{Drain-Source Diode Characteristics and Max Ratings}$ $I_S \text{Maximum Continuous Drain to Source Diode Forward Current} \qquad - \qquad - \qquad 60 \qquad \text{A}$ $I_{SM} \text{Maximum Pulsed Drain to Source Diode Forward Current} \qquad - \qquad - \qquad 240 \qquad \text{A}$ $V_{SD} \text{Drain to Source Diode Forward Voltage} V_{GS} = 0\text{V}, \ I_S = 30\text{A} \qquad - \qquad - \qquad 1.2 \qquad \text{V}$ $\text{trr} \text{Body Diode Reverse Recovery Time} \qquad - \qquad 50 \qquad - \qquad \text{ns}$ $I_F = 20\text{A}, \ \text{di/dt} = 100\text{A/us}$	t _{d(on)}	Turn-On DelayTime		-	13.5	-	ns
$t_{\rm f} \text{Turn-Off Fall Time} \qquad \qquad - \qquad 18 \qquad - \qquad \text{ns}$	t_r	Turn-On Rise Time	$V_{GS} = 10V, V_{DD} = 50V$	-	17.0	-	ns
Drain-Source Diode Characteristics and Max Ratings I_S Maximum Continuous Drain to Source Diode Forward Current60A I_{SM} Maximum Pulsed Drain to Source Diode Forward Current240A V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0V$, $I_S = 30A$ 1.2VtrrBody Diode Reverse Recovery Time-50-ns $I_F = 20A$, di/dt = 100A/us	$t_{\text{d(off)}}$	Turn-Off DelayTime	$I_D=20A$, $R_{GEN}=6\Omega$	-	30	-	ns
I_S Maximum Continuous Drain to Source Diode Forward Current60A I_{SM} Maximum Pulsed Drain to Source Diode Forward Current240A V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0V$, $I_S = 30A$ 1.2VtrrBody Diode Reverse Recovery Time-50-ns	t_f	Turn-Off Fall Time		-	18	-	ns
I_{SM} Maximum Pulsed Drain to Source Diode Forward Current 240 A V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0V$, $I_S = 30A$ 1.2 V trr Body Diode Reverse Recovery Time $I_F = 20A$, di/dt = 100A/us	Drain-So	urce Diode Characteristics and M	Max Ratings				
V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0V$, $I_S = 30A$ 1.2 V trr Body Diode Reverse Recovery Time $I_F = 20A$, di/dt = 100A/us	Is	Maximum Continuous Drain to Source D	iode Forward Current	-	-	60	Α
trr Body Diode Reverse Recovery Time - 50 - ns $I_F = 20A$, di/dt = 100A/us	I _{SM}	Maximum Pulsed Drain to Source Diode	Forward Current	-	-	240	Α
$I_F = 20A$, di/dt = 100A/us	V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0V, I _S = 30A	-	-	1.2	V
	trr	Body Diode Reverse Recovery Time	1 = 2004 41/44 = 4004/	-	50	-	ns
	Qrr	Body Diode Reverse Recovery Charge	ı _F = 20A, ai/at = 100A/us	-	80	-	nC
	Qrr	Body Diode Reverse Recovery Charge		-	80	-	n(

Notes:

^{1.} Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.

^{2.} E_{AS} condition: Starting T_J =25°C, V_{DD} =50V, V_G =10V, R_G =25ohm, L=0.5mH, I_{AS} =19A

^{3.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%.


N-Channel 100V, 9.5mΩ Typ. Power MOSFET

Typical Performance Characteristics

30

25

V_{DS} = 5V

20

Figure 2: Typical Transfer Characteristics

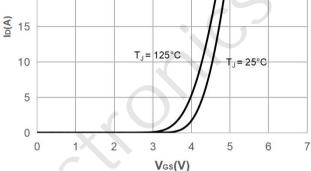


Figure 3: On-resistance vs. Drain Current

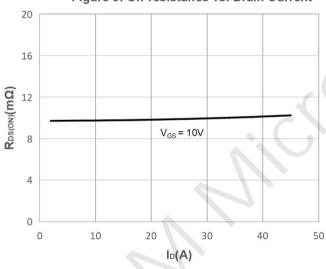


Figure 4: Body Diode Characteristics

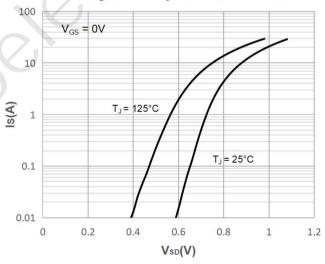


Figure 5: Gate Charge Characteristics

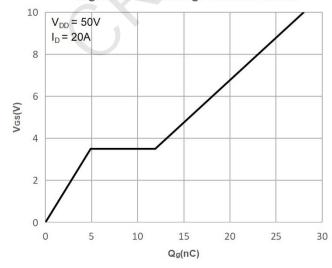
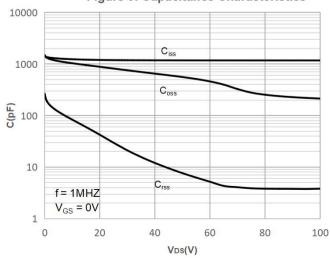



Figure 6: Capacitance Characteristics

Typical Performance Characteristics

Figure 7: Normalized Breakdown voltage vs.
Junction Temperature

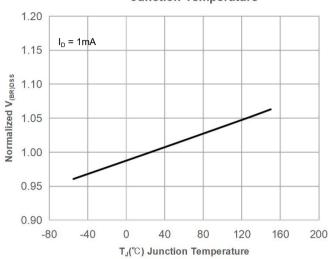


Figure 9: Maximum Safe Operating Area

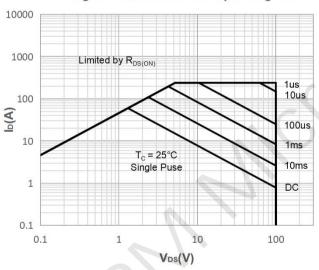


Figure 11: Normalized Maximum Transient

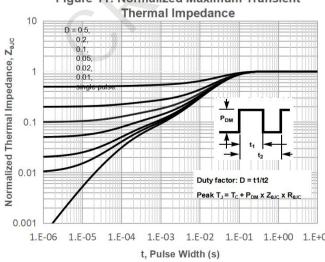


Figure 8: Normalized on Resistance vs. Junction Temperature

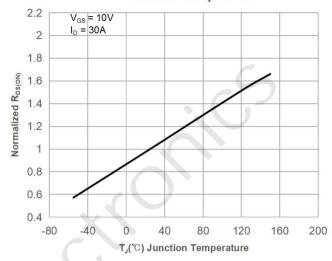


Figure 10: Maximum Continuous Drian Current vs. Case Temperature

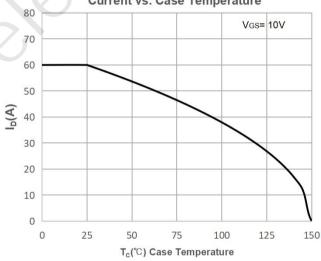
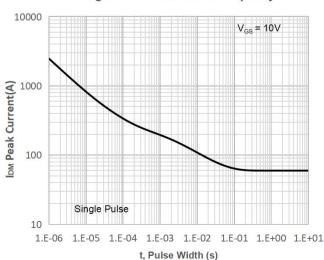



Figure 12: Peak Current Capacity

N-Channel 100V, 9.5mΩ Typ. Power MOSFET

Test Circuit

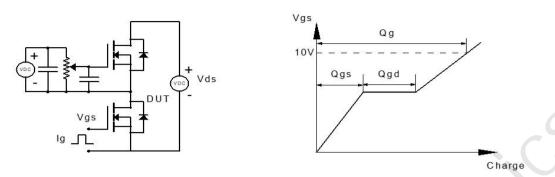


Figure 1: Gate Charge Test Circuit & Waveform

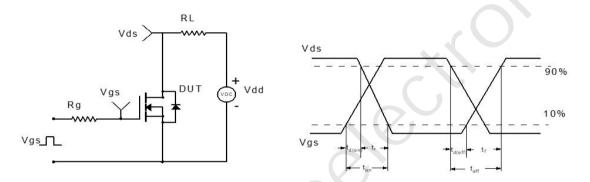


Figure 2: Resistive Switching Test Circuit & Waveform

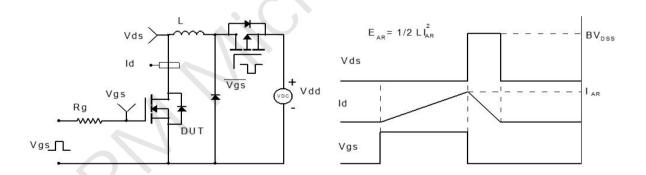
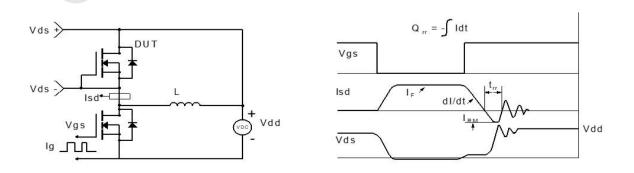
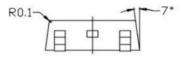
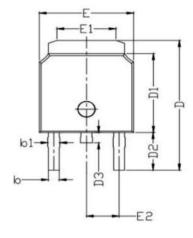
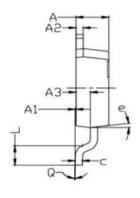


Figure 3: Unclamped Inductive Switching Test Circuit& Waveform


Figure 4: Diode Recovery Test Circuit & Waveform

N-Channel 100V, 9.5mΩ Typ. Power MOSFET

Package Mechanical Data(TO-252-3L)

COMMON DIMENSION(MM)					
PKG	TO-252-3L				
Symbot	MIN	MAX			
Α	2.250	2.300	2.400		
A1	0.010	0.060	0.150		
A2	0.500	0.508	0.550		
A3	0.960	1.010	1.060		
b	0.740	0.760	0.800		
b1	0.880	0.900	0.950		
С	0.500	0.508	0.550		
D	9.800	10.025	10.350		
D1	6.050	6.100	6.180		
D2	2.850	2.900	2.950		
D3	0.700	0.800	2.900		
Е	6.550	6.600	6.700		
E1	4.050	4.130	4.200		
E2	2.250	2.286	2.300		
L	1.400 1.500		1.600		
e	7.000				
Q	0°	2°	5°		

Important Notice

The information presented in datasheets is for reference only. CRM reserves the right to make changes at any time to any products or information herein, without notice.

Customers are responsible for the design and applications, including compliance with all laws, regulations and safety requirements or standards.

"Typical" parameters which provided in datasheets can vary in different applications and actual performance may vary over time. Customers are responsible for doing all necessary testing to minimize the risks associated with their applications and products.

is a registered trademark of Wuxi CRM Microelectronics Co. , Ltd. Copyright ©2023 CRM Microelectronics Co. , Ltd. All rights reserved.

Contact information

For more information, please visit: http://www.crm-semi.tech For sales information, please send an email to: sales@crm-semi.com